Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; 39(14): 5033-5047, 2021 09.
Article in English | MEDLINE | ID: covidwho-1574027

ABSTRACT

COVID-19 has ravaged the world and is the greatest of pandemics in human history, in the absence of treatment or vaccine the mortality and morbidity rates are very high. The present investigation was undertaken to screen and identify the potent leads from the Indian Ayurvedic herb, Asparagus racemosus (Willd.) against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. Asparoside-C, Asparoside-D and Asparoside -F were found to be most effective against both the proteins as confirmed through their docking score and affinity. Further, the 100 ns molecular dynamics study also confirmed the potential of these compounds from reasonably lower root mean square deviations and better stabilization of Asparoside-C and Asparoside-F in spike receptor-binding domain and NSP15 Endoribonuclease respectively. MM-GBSA based binding free energy calculations also suggest the most favourable binding affinities of Asparoside-C and Asparoside-F with binding energies of -62.61 and -55.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. HighlightsAsparagus racemosus have antiviral potentialPhytochemicals of Shatavari showed promising in-silico docking and MD resultsAsparaoside-C and Asparoside-F has good binding with target proteinsAsparagus racemosus holds promise as SARS-COV-2 (S) and (N) proteins inhibitor Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , SARS-CoV-2
2.
J Biomol Struct Dyn ; 39(12): 4510-4521, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1317843

ABSTRACT

COVID-19 has ravaged the world and is the greatest of pandemics in modern human history, in the absence of treatment or vaccine, the mortality and morbidity rates are very high. The present investigation identifies potential leads from the plant Withania somnifera (Indian ginseng), a well-known antiviral, immunomodulatory, anti-inflammatory and a potent antioxidant plant, using molecular docking and dynamics studies. Two different protein targets of SARS-CoV-2 namely NSP15 endoribonuclease and receptor binding domain of prefusion spike protein from SARS-CoV-2 were targeted. Molecular docking studies suggested Withanoside X and Quercetin glucoside from W. somnifera have favorable interactions at the binding site of selected proteins, that is, 6W01 and 6M0J. The top-ranked phytochemicals from docking studies, subjected to 100 ns molecular dynamics (MD) suggested Withanoside X with the highest binding free energy (ΔGbind = -89.42 kcal/mol) as the most promising inhibitor. During MD studies, the molecule optimizes its conformation for better fitting with the receptor active site justifying the high binding affinity. Based on proven therapeutic, that is, immunomodulatory, antioxidant and anti-inflammatory roles and plausible potential against n-CoV-2 proteins, Indian ginseng could be one of the alternatives as an antiviral agent in the treatment of COVID 19. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Panax , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL